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The assembly of the insulating Brownian particles globally coupled due to the macroscopic flow of the
liquid with low conductivity has transitions between the states of random motion and random bidirectional and
unidirectional motion. The threshold values of the parameters for the transition to random bidirectional motion
is found by the effective field method and correspond to those found by Brownian dynamics. The behavior of
the assembly is similar to the behavior of different active multistable systems.
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Bistable systems in the presence of thermal noise have
gained great interest recently[1–3]. Among the unusual
properties of these systems negative stiffness[4], negative
friction coefficient[5,6], and resistance due to rectification of
Brownian motion[7] should be mentioned. Another interest-
ing feature lies in the symmetry breaking transitions leading
to the synchronized behavior of the globally coupled multi-
stable systems. Such transitions have been found for swarm-
ing animals [8,9], limit-cycle oscillators[10], chaotic dy-
namical systems[11], cooperative molecular motors[12],
and others. The bidirectional random motion was observed
recently in the motility assays for filaments coupled to the
assembly of genetically modified molecular motors[13].
This feature of the motion was reproduced by a model of
two-state rigidly coupled motors with external noise[14].
Here we consider another system with similar properties.
The assembly of insulating Brownian particles in a liquid of
low conductivity occupies the space between two solid
plates. One of the plates can freely slide with respect to the
other iny axis direction. An electric field is applied perpen-
dicularly to the plates inz axis direction(Fig. 1). The direc-
tion of the induced dipolar moment of the particle in quies-
cent fluid due to its negative susceptibility is opposite to the
electric field. Since the particle polarization time is finite,
then in the vorticity of the flow induced by the motion of the
free plate, the dipolar moment acquires the component per-
pendicular to the field. As a result, the torque appears and
creates the rotation of the particle in the direction which
sustains the motion of the free plate. This is the so called
negative viscosity effect predicted quite a long time ago[15]
and confirmed experimentally recently[16]. Due to the con-
tinuous energy supply from the batteries, the assembly be-
haves as an active system with the global coupling between
its elements induced by the liquid flow. The theoretical
model of the system includes the polarization relaxation
equation of the particles[17] and the equation of motion of
the system with internal rotations[18]. Since particle rotation
in the yz plane can occur in two possible directions, the
system possesses the properties of a bistable system. In[19]
the case is considered where the bistability of the system
arises due to spontaneous rotations of the particles in the

electric field above the threshold value. A random thermal
motion causing the transitions between the states of a
bistable system with the contributions of the opposite sign to
the effective viscosity leads to the diminution of the negative
viscosity effect. Another situation, as considered here, arises
when the rotation of the particles themselves creates the
shear flow. In this case due to the global coupling induced by
the flow a synchronous rotation of the particles is possible
even below the threshold value of the electric field. A con-
straint imposed on the free plate allows its motion only in the
positive or negativey axis direction. Thus a bistable system
arises where the bistability is due to the free plate motion.
Here we show that the assembly of the noisy active particles
is able, in a certain range of the parameters, to create random
bidirectional motion of the free plate. The dynamics of the
system is characterized by several transitions between ran-
dom motion, bidirectionality, and directed motion. Transition
to the bidirectional random motion may be described by a
mean field approximation. In the analysis of the time auto-
correlation function of the velocity of the free plate, correla-
tion time in dependence on the physical parameters involved
has been found. The increase of the correlation time with the
electric field shows the transition to the unidirectional regime
when its strength is large enough.

The set of equations includes the stochastic relaxation
equation for the dipolar moment of each particle in the ex-

ternal electric fieldEW along thez direction [17] (i =1, . . . ,N,
N is the number of active particles):
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FIG. 1. An insulating particle in a shear flow under the action of

an electric field.

PHYSICAL REVIEW E 70, 011402(2004)

1539-3755/2004/70(1)/011402(5)/$22.50 ©2004 The American Physical Society70 011402-1



dPW i

dt
= fVW i 3 PW ig −

1

t
sPW i − sx0 − x`dEW d, s1d

VW i = VW 0 +
1

ar
fPW i 3 EW g + VW ri . s2d

Here x0,̀ are the susceptibilities of particle polarization at
low and high electric field frequencies correspondingly:

x0 =
3Ve1

4p

g2 − g1

g2 + 2g1
,

x` =
3Ve1

4p

e2 − e1

e2 + 2e1
,

t = e2 + 2e1/4psg2 + 2g1d,

is the Maxwell relaxation time,ar is the rotational friction

coefficient of the particle,VW 0 is the vorticity of flow,V is the
volume of the particle, index 1 refers to the fluid and index 2

to the particle. The vorticity of the macroscopic flowVW 0 in
assumption of the Couetta flow between two plates is ex-

pressed through the velocity of the free platev as VW 0=
−sv /2hdeWx (h is the distance between the plates). The veloc-
ity of the free plate is determined by the balance of the vis-
cous force and the force due toN active polarizable particles.

Since the torque on the particle isfPW i 3EW gx, then the force
applied to the liquid and as consequence to the plate iny axis

direction can be written as 1/2dfPW i 3EW gx, where d is the
characteristic length with the order of magnitude of the par-
ticle diameter. Thus the force balance on the free plate reads

− av − o
i=1

N
1

2d
fPW i 3 EW gx = 0. s3d

Herea=hS/h, S is the area of the plate,h is the viscosity of
the liquid.

Introducing as a characteristic time scale the Maxwell re-

laxation time t, PW =−sx0−x`dEP̃
W

and introducing the unit

vector nW along the polarization directionP̃
W

= P̃nW (tildas fur-
ther are omitted) the set of dimensionless equations for the
globally coupled noisy active particles issi =1, . . . ,Nd

dnW i

dt
= fVW ni 3 nW ig, s4d

dPi

dt
= − sPi + eW ·nW id, s5d

VW ni = a
E2

Ec
2

1

N
o
j=1

N

PjyeWx +
1

Pi
S1 −

E2

Ec
2Pi

2DfeW 3 nW ig + VW ri . s6d

Here the critical electric fieldEc
2=−far /tsx0−x`dg is intro-

duced. At E.Ec spontaneous rotations of the single par-
ticles, the so-called von Quinke effect[19] arises. The pa-
rametera=arN/4hda characterizes the global coupling of

the elements. In the continuum limit, the parametera reduces
to nar /4h, wheren is the number of particles per volume

unit [15]. NoiseVW ri for the different particles is uncorrelated.

Equation VW ni=0 in the mean field approximation
1/No j=1

N Pjy=Py and the absence of the noise forPi gives
Pi

2=f1/s1+adgsE2/Ec
2d. Thus the solutionuPiu,1 is possible

at the electric field above the critical valueE* =Ec/Î1+a,
which ata.0 is less than the threshold value of von Quinke
effect Ec. The velocity of the free plate scaled with 2h/t
inducing the synchronous rotations of the particles atE.E*
found from Eq.(3) is

v = ±
a

1 + a
ÎE2

E*
2 − 1.

Thus the motion of the free plate occurs in positive or nega-
tive y axis direction atE.E* . In the presence of the thermal
noise transitions between these two states are possible. The
regimes arising in this case can be found by the numerical
solution of the set of stochastic differential equations(4)–(6).
It is carried out by the Brownian dynamics method as de-
scribed in[19].

Dispersions of the random angles of the particle rotation
according to the fluctuation-dissipation theorem are given by
(k=1,2 denotes the components of the random angular ve-

locity VW ri perpendicular to instantaneous direction ofnW)

ksVri
skdDtd2l = 2

t

tB
Dt.

Here tB=ar /kBT is the characteristic Brownian time. Since
in our casetB/t is quite large then adiabatic approximation
[20] according to whichPi =−eW ·nW i may be applied. In this
approximation the Fokker-Planck equation for the probabil-
ity distribution functionWsnWd corresponding to(5) and(6) in
the case when global coupling is absent and the particles are

independent issKW n=fnW 3 s] /]nWdgd

] W

] t
=

t

ar
KW nsKW nEWd +

t

tB
KW n

2 W. s7d

Here the potentialE of the active element reads

E =
ar

t
S− lnueWnW u +

1

2

E2

Ec
2seW ·nWd2D . s8d

Equation(7) as a steady solution has

W0snzd = Q−1ueWnW utB/texpS−
1

2

tB

t

E2

Ec
2seW ·nWd2D . s9d

Normalized distributionWz=W0snzd /W0s1d of nz values
obtained according to the Brownian dynamics and averaged
for 10 realizations of 53106 long runs with time stepDt
=0.01 forb=stB/tdsE2/Ec

2d=0.4 and calculated according to
the relation(9) is shown in Fig. 2. The distributionWy of ny
values is calculated according to the relation
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W0ysnyd = Q−1E dsny − sin q sin wducosqutB/t

3exps− b sin2 qdsin qdqdw. s10d

The normalized probability distribution Wy
=W0ysnyd /W0ys0d found by Brownian dynamics and aver-
aged for 10 realizations of 53106 long runs with time step
Dt=0.01 forb=stB/tdsE2/Ec

2d=0.4 and calculated according
to the relation(10) is shown in Fig. 3. We see that in the
absence of the global coupling the distribution of the trans-
versal to the electric field component of the dipolar moment
of the particles is unimodal.

At nonzero values of the coupling parametera a transition
to the bimodal distribution for the transversal component of
polarization takes place. In the mean field approximation
1/N oi=1

N Piy=Py valid if the number of particles in assembly
is large enough, the Fokker-Planck equation reads

] W

] t
= − KW nsVW 0Wd +

t

ar
KW sKW nEWd +

t

tB
KW n

2W. s11d

Here VW 0=asE2/Ec
2dPsfnW 3eWg ·eWxdeWx, whereP=−nz according

to the adiabatic approximation. The critical parameters for
the transition to the bimodal distribution can be found in the

effective field approximation which has been successfully
applied to the problems of the magnetic relaxation in mag-
netic colloids even in situations far from the thermodynamic
equilibrium [21,22]. According to it

W= Q−1 expS−
E

kBT
+

lW ·nW

kBT
D ,

where the value of the effective fieldlW is fixed by the con-
dition

E nWWsnWdd2nW = knWl.

The equation for the effective field parameterlW is found by
multiplying Eq.(11) with nW and taking the average. Account-

ing for the antihermitian property of operatorKW n we obtain
(kl denotes the average with respect to the distribution func-
tion W)

FIG. 2. Distribution of thenz component.N=1, a=0, tB/t
=10. Averaged by 10 realizations of 53106 time step runs with
Dt=0.01.E2/Ec

2=0.4.

FIG. 3. Distribution of theny component.N=1, a=0, tB/t
=10. Averaged by 10 realizations of 53106 time step runs with
Dt=0.01.E2/Ec

2=0.4.

FIG. 4. Transition to the bimodal distribution.N=40, a=3,
tB/t=10. Averaged by 10 realizations of 53106 time step runs
with Dt=0.01.E2/Ec

2=0.43(squares); E2/Ec
2=0.44(empty circles);

E2/Ec
2=0.45 (filled circles).

FIG. 5. Random bidirectional motion of free plate.N=20, a
=3, 53106 time steps withDt=0.01 are shown.E2/Ec

2=0.54,
tB/t=10.
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] knWl
] t

= kfVW 0 3 nWgl −
t

ar
slW − knWsnW · lW dld. s12d

This is a nonlinear equation for the effective fieldlW . In the
linear approximation, Eq.(12) allows one to study the stabil-
ity of the unimodal distribution with respect to the formation
of the state with transversal mean polarization. In this case

W= W0S1 +
lyny

kBT
D

and Eq.(12) gives

] knyl
] t

=
t

ar
lySa

tB

t

E2

Ec
2knz

2ny
2l0 − s1 − knz

2l0dD . s13d

Here kl0 denotes the moments of the distribution function
W0. The condition of the instability of the unimodal distribu-
tion reads

a
tB

t

E2

Ec
2knz

2ny
2l0 − s1 − knz

2l0d . 0.

The threshold value of the parameterb=stB/tdsE2/Ec
2d for

the transition to the bimodal distribution is found from the
solution of the equation

ab=
f0stB/t,bd + f1stB/t,bd
f1stB/t,bd − f2stB/t,bd

. s14d

Here fnstB/t ,bd=e0
1 xtB/t+2n exps−1

2bx2ddx. The threshold
value of the parameterb found by the solution of Eq.(14)
coincides reasonably well with that found by Brownian dy-
namics simulation. The distributions ofny found numerically
in the caseN=40 and a=3;tB/t=10 for three values of

E2/Ec
2 are shown in Fig. 4. We see that the transition to the

bimodal distribution occurs forE2/Ec
2 between 0.44 and

0.45. This value coincides reasonably well with that found
from the solution of Eq.(14), sE2/Ec

2d* =0.4432. If the num-
ber of particlesN is not large enough, the threshold value
sE2/Ec

2d* diminishes with respect to that found in mean field
approximation. Above the critical valuesE2/Ec

2d* beautiful
random bidirectional motion of the free plate arises as shown
in Fig. 5.

The characteristic time of bidirectional oscillations may
be found from the study of the time autocorrelation function
of the free plate velocityCstd=kvs0dvstdl / kvs0d2l. For par-
ticular values of the parameters they are shown in Fig. 6. For
the time t not too largeCstd obeys the exponential law
exps−t /tcd. The characteristic plate velocity correlation time
tc is found from semilogarithmic plot of autocorrelation
functions. Its dependence onE2/Ec

2 for several values of
tB/t in semilogarithmic coordinates is given in Fig. 7. These
results show that at the increase of the parameterE2/Ec

2, the
velocity relaxation time increases drastically. Due to this the
dynamics of the system becomes unidirectional ifE2/Ec

2 is
large enough, for example atE2/Ec

2=0.65; N=20;tB/t
=10;a=3 unidirectionality is conserved for 53106 time
steps withDt=0.01 long run.

Thus, the results obtained show that the assembly of the
insulating particles in liquid with low conductivity allows
one to create globally coupled system of noisy active ele-
ments. Its properties are similar to those found in different
active multistable systems. It allows one to study the transi-
tion rates between the steady states of the non-equilibrium
system which have attracted great interest.
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